The Schumann resonances (SR) are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth‘s electromagnetic field spectrum. Schumann resonances are global electromagnetic resonances, generated and excited by lightning discharges in the cavity formed by the Earth’s surface and the ionosphere.[1]


This global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances occur because the space between the surface of the Earth and the conductive ionosphere acts as a closed waveguide. The limited dimensions of the Earth cause this waveguide to act as a resonant cavity for electromagnetic waves in the ELF band. The cavity is naturally excited by electric currents in lightning. Schumann resonances are the principal background in the part of the electromagnetic spectrum[2] from 3 Hz through 60 Hz,[3] and appear as distinct peaks at extremely low frequencies (ELF) around 7.83 Hz (fundamental),[4] 14.3, 20.8, 27.3 and 33.8 Hz.[5]

In the normal mode descriptions of Schumann resonances, the fundamental mode is a standing wave in the Earth–ionosphere cavity with a wavelength equal to the circumference of the Earth. This lowest-frequency (and highest-intensity) mode of the Schumann resonance occurs at a frequency of approximately 4.11 Hz, but this frequency can vary slightly from a variety of factors, such as solar-induced perturbations to the ionosphere, which compresses the upper wall of the closed cavity. The higher resonance modes are spaced at approximately 6.5 Hz intervals, a characteristic attributed to the atmosphere’s spherical geometry. The peaks exhibit a spectral width of approximately 20% on account of the damping of the respective modes in the dissipative cavity. The 8th partial lies at approximately 60 Hz.

Observations of Schumann resonances have been used to track global lightning activity. Owing to the connection between lightning activity and the Earth’s climate it has been suggested that they may also be used to monitor global temperature variations and variations of water vapor in the upper troposphere. It has been speculated that extraterrestrial lightning (on other planets) may also be detected and studied by means of their Schumann resonance signatures. Schumann resonances have been used to study the lower ionosphere on Earth and it has been suggested as one way to explore the lower ionosphere on celestial bodies. Effects on Schumann resonances have been reported following geomagnetic and ionospheric disturbances. More recently, discrete Schumann resonance excitations have been linked to transient luminous events – spritesELVESjets, and other upper-atmospheric lightning. A new field of interest using Schumann resonances is related to short-term earthquake prediction. Interest in Schumann resonances was renewed in 1993 when E. R. Williams showed a correlation between the resonance frequency and tropical air temperatures, suggesting the resonance could be used to monitor global warming.[6][7] In applied geophysics, the resonances of Schumann are used in the prospection of offshore hydrocarbon deposits.[8]




  1.  “Schumann Resonance”. NASA. Retrieved November 8, 2017.
  2. MacGorman, D. R.; Rust, W. D. (1998). The electrical nature of storms. New York: Oxford University Press. p. 114. ISBN 9780195073379OCLC 35183896.
  3. Volland, Hans (1995). Handbook of atmospheric electrodynamics1. Boca Raton: CRC Press. p. 277. ISBN 9780849386473OCLC 31408654.
  4. Rusov, V.D. (2012). “Can Resonant Oscillations of the Earth Ionosphere Influence the Human Brain Biorhythm?”. arXiv:1208.4970 [physics.gen-ph].Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Ukraine
  5. Montiel, I.; Bardasano, J.L.; Ramos, J.L. (2005). “Biophysical Device For The Treatment Of Neurodegenerative Diseases”. In Méndez-Vilas, A. (ed.). Recent Advances in Multidisciplinary Applied Physics. Proceedings of the First International Meeting on Applied Physics (APHYS-2003) October 13-18th 2003, Badajoz, Spain. pp. 63–69. doi:10.1016/B978-008044648-6.50011-2. ISBN 9780080446486.
  6. Williams, Earle R. (May 22, 1992). “The Schumann resonance: A global tropical thermometer”Science256 (5060): 1184–1187. Bibcode:1992Sci…256.1184W. doi:10.1126/science.256.5060.1184. PMID 17795213. Retrieved February 27, 2017.
  7. Barr, R.; Llanwyn Jones, David; Rodger, C.J. (2000). “ELF and VLF radio waves” (PDF)Journal of Atmospheric and Solar-Terrestrial Physics62 (17–18): 1689–1718. Bibcode:2000JASTP..62.1689B. doi:10.1016/S1364-6826(00)00121-8.
  8. Stéphane SainsonElectromagnetic seabed logging, A new tool for geoscientists. Ed. Springer, 201